56 research outputs found

    Compactness and finite forcibility of graphons

    Get PDF
    Graphons are analytic objects associated with convergent sequences of graphs. Problems from extremal combinatorics and theoretical computer science led to a study of graphons determined by finitely many subgraph densities, which are referred to as finitely forcible. Following the intuition that such graphons should have finitary structure, Lovasz and Szegedy conjectured that the topological space of typical vertices of a finitely forcible graphon is always compact. We disprove the conjecture by constructing a finitely forcible graphon such that the associated space is not compact. The construction method gives a general framework for constructing finitely forcible graphons with non-trivial properties

    Bounded colorings of multipartite graphs and hypergraphs

    Full text link
    Let cc be an edge-coloring of the complete nn-vertex graph KnK_n. The problem of finding properly colored and rainbow Hamilton cycles in cc was initiated in 1976 by Bollob\'as and Erd\H os and has been extensively studied since then. Recently it was extended to the hypergraph setting by Dudek, Frieze and Ruci\'nski. We generalize these results, giving sufficient local (resp. global) restrictions on the colorings which guarantee a properly colored (resp. rainbow) copy of a given hypergraph GG. We also study multipartite analogues of these questions. We give (up to a constant factor) optimal sufficient conditions for a coloring cc of the complete balanced mm-partite graph to contain a properly colored or rainbow copy of a given graph GG with maximum degree Δ\Delta. Our bounds exhibit a surprising transition in the rate of growth, showing that the problem is fundamentally different in the regimes Δm\Delta \gg m and Δm\Delta \ll m Our main tool is the framework of Lu and Sz\'ekely for the space of random bijections, which we extend to product spaces

    Fractional colorings of cubic graphs with large girth

    Get PDF
    We show that every (sub)cubic n-vertex graph with sufficiently large girth has fractional chromatic number at most 2.2978 which implies that it contains an independent set of size at least 0.4352n. Our bound on the independence number is valid to random cubic graphs as well as it improves existing lower bounds on the maximum cut in cubic graphs with large girth

    Fractional coloring of triangle-free planar graphs

    Get PDF
    We prove that every planar triangle-free graph on nn vertices has fractional chromatic number at most 31n+1/33-\frac{1}{n+1/3}

    Common graphs with arbitrary chromatic number

    Full text link
    Ramsey's Theorem guarantees for every graph H that any 2-edge-coloring of a sufficiently large complete graph contains a monochromatic copy of H. In 1962, Erdos conjectured that the random 2-edge-coloring minimizes the number of monochromatic copies of K_k, and the conjecture was extended by Burr and Rosta to all graphs. In the late 1980s, the conjectures were disproved by Thomason and Sidorenko, respectively. A classification of graphs whose number of monochromatic copies is minimized by the random 2-edge-coloring, which are referred to as common graphs, remains a challenging open problem. If Sidorenko's Conjecture, one of the most significant open problems in extremal graph theory, is true, then every 2-chromatic graph is common, and in fact, no 2-chromatic common graph unsettled for Sidorenko's Conjecture is known. While examples of 3-chromatic common graphs were known for a long time, the existence of a 4-chromatic common graph was open until 2012, and no common graph with a larger chromatic number is known. We construct connected k-chromatic common graphs for every k. This answers a question posed by Hatami, Hladky, Kral, Norine and Razborov [Combin. Probab. Comput. 21 (2012), 734-742], and a problem listed by Conlon, Fox and Sudakov [London Math. Soc. Lecture Note Ser. 424 (2015), 49-118, Problem 2.28]. This also answers in a stronger form the question raised by Jagger, Stovicek and Thomason [Combinatorica 16, (1996), 123-131] whether there exists a common graph with chromatic number at least four.Comment: Updated to include reference to arXiv:2207.0942
    corecore